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Abstract
We propose a low-cost sensing system that recognizes an object’s location on a surface using active acoustic sensing. 
Our proposed system uses a thin speaker attached to an object as a marker and estimates the marker’s location from the 
sound source. Localization is achieved through machine learning (random forest) based on the property that high-frequency 
components of sound decrease more than low-frequency components with distance. We additionally implemented a system 
to simulate the condition where multiple objects are placed simultaneously and to estimate the frequency response of those 
objects from training data where only a single object is placed. Performance tests show that our system localizes a single 
object with a mean absolute error of 0.41 cm in a 20 cm square area on a wooden deck and also localizes the placement of 
four objects with an accuracy of 1.83 cm while saving 83.3% of the effort needed to collect the training data.

Keywords Tangible user interface · Active acoustic sensing · Sound localization · Machine learning

Introduction

There has been much research on computer recognition of 
information in recent years, such as the type and position of 
real-world objects and interactions with them. For example, 
in Project Zanzibar, the computer recognizes the type and 

position of a remarkable toy figure so that it can be played 
with using computer images [1]. Prior research efforts con-
sidered using various types of sensors for recognition of 
object information, such as cameras (e.g., [2]) and pressure 
sensors (e.g., [3]). However, camera-based methods often 
require placing the camera at a high location such as the 
ceiling to eliminate occlusion and pressure sensors need to 
be spread over the sensor surface, resulting in high prototyp-
ing costs for object information recognition. Therefore, it is 
difficult for developers to make existing, everyday objects 
interactive.

As an approach to address this limitation, we focus on 
active acoustic sensing. We can achieve this sensing tech-
nique by propagating acoustic signals between a microphone 
and a loudspeaker and analyzing their responses. This low-
cost system can be easily implemented by simply attaching 
a microphone and speaker to an object or surface. In the 
active acoustic sensing method, a thin speaker is attached 
to an object as an acoustic monitor and its surface becomes 
the sensing surface. Each acoustic marker emits an acoustic 
signal of a specific frequency assigned to its corresponding 
object. The type and location of an object on the surface can 
then be estimated by the propagated acoustic signals.

In this case, analyzing the acoustic signal and estimat-
ing the location of marker-attached objects is the same as 
localizing the source of an acoustic signal emitted from the 
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marker. One promising method for sound source localization 
is time difference of sound arrivals (TdoA) positioning [4], 
which uses an array of microphones. This method uses mul-
tiple microphones to sense acoustic signals and localizes the 
sound source based on the arrival time difference of acoustic 
signals to each microphone. However, its distance resolution 
depends on the sampling rate of the audio hardware. There-
fore, a sampling rate of 1 MHz or higher is often required 
for localizing a sound source to a few cms. Audio measure-
ment devices thus require high hardware performance and 
are not suitable for sensing in a small area, such as the size 
of a desk.

In this study, we propose a novel system of active acoustic 
sensing based on the characteristic that high-frequency 
components of sound damp out with distance, therefore 
enabling sensing in a small area without depending on 
the performance of audio hardware such as sampling 
rate. In addition, as a more advanced recognition method, 
we propose a system for estimating the training data of 
multiple objects placed simultaneously from the training 
data of individual objects placed singularly. This estimation 
is achieved by applying the principle of superposition to 
sound waves. We expect this system to significantly reduce 
the time and effort required to collect the training data. In 
addition, by separating the frequencies of the signals emitted 
from the acoustic markers, we attempt to create a sound 
source localization system in which the acoustic signals do 
not interfere with each other.

This paper first describes the implementation of our 
prototype device consisting of a microphone, a piezoelectric 
element as a speaker, and an audio interface. Next, we 
describe the localization of a single object on a wooden 
desk in two dimensions and evaluate the estimation error and 
learning cost. Then, we describe a multi-object recognition 
system based on the principle of wave superposition 
and show an estimation test of four different objects 
simultaneously. Finally, based on these results, we discuss 
our system and possible applications.

Our main contributions are: (i) We proposed and tested 
a marker system for recognizing object placement on a 
surface using active acoustic sensing and (ii) our additional 
evaluation confirmed the possibility of simultaneously 
estimating the placement of four objects.

Related work

Object recognition

A major approach to object recognition involves camera-
based methods, such as using images with neural networks 
[2]. However, optical occlusion is a problem for these 
methods by interrupting sensing each time an object is 

manipulated. To solve this, other studies have attempted to 
place a camera or projector under the sensing surface [5] 
to analyze the bottom shape of the object [6] and estimate 
the type and location of the object. However, a table with a 
camera and projector is inevitably a large device. Another 
approach is based on the physical characteristics of the 
object. Studies have been reported on recognizing objects 
by using the electromagnetic noise of electronic devices 
[7] and the electrical conductivity of objects [8]. However, 
these methods are limited in that they can only recognize 
particular objects. In addition, a method to identify objects 
from their footprints using Fourier-transform infrared 
spectroscopy (FTIR; pressure-sensitive sheeting) on the 
floor has been investigated [9]. However, it is difficult to 
distinguish objects with similar footprints.

In summary, there are various approaches to object 
recognition. However, these approaches are limited in the 
objects that can be detected and the implementing cost of 
these systems is high because a sensor needs to be embedded 
in the sensing surface. We therefore employ acoustic sensing 
for object recognition as it easily recognizes existing object 
information at low cost.

Acoustic sensing

Passive acoustic sensing

Passive acoustic sensing detects and analyzes the sound 
generated by tapping and scraping sounds without any 
applying signal. It can recognize touch detection [10, 11], 
swipe gesture detection [12, 13], objects used for touch [14, 
15], and human activities (e.g., using an oven, turning on a 
faucet) [16–19].

Acoustic Pulse Recognition (APR) is one of the well-
known passive acoustic sensing techniques. This method 
identifies the touched location by matching the pattern of 
the acoustic signal generated upon touch with a database. 
APR has been adopted in numerous devices. However, 
it is not suitable for scenarios where a static object is 
placed [20]. Knocker [21] is a method of recognizing 
everyday objects using a single smartphone. This method 
recognizes a knocked object from the difference in frequency 
characteristics by recording and analyzing the impulse 
response generated when the object is knocked with the 
smartphone containing a microphone. Since this study 
uses impulse response, recognition is possible in real-time. 
However, recognition requires the user’s knocking action 
and the object’s position cannot be recognized.

Active acoustic sensing

In active acoustic sensing methods, an acoustic signal 
is applied from a speaker to an object or space, and the 
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response obtained from the microphone is analyzed. For 
example, attaching microphones and speakers to the human 
body to propagate acoustic signals is called bio-acoustic 
sensing, which can be used to detect hand and body posture 
[22, 23]. Facial expression [23, 24] can also be recognized. 
These studies show that active acoustic sensing can 
recognize small changes in muscles and skin. Compared 
with passive acoustic sensing, active acoustic sensing can 
even detect contacts and movements that do not generate 
sounds during the motion, such as soft finger touch. Ono 
et al. proposed Touch & Activate [25], a system that uses 
active acoustic sensing to recognize the grasping state of 
an object with an accuracy of 99.6%. This system makes 
use of the fact that the frequency response of an object 
changes when it comes into contact with human skin. Since 
microphones and speakers are quite commoditized, many 
researchers in the field of human-computer interaction 
(HCI) have tried to extend existing devices such as laptops, 
smartphones, and smartwatches with active acoustic sensing 
to add operations such as gesture recognition [26–28]. We 
propose a method that uses this active acoustic sensing 
principle to turn arbitrary objects into surfaces with object 
recognition and localization capabilities.

Acoustic‑based localization

The localization of an object using acoustic signals from 
acoustic markers attached to the object is the same as the 
localization of a sound source at a specific frequency. We 
employed this method for object localization on a two-
dimensional surface. There have been many studies on the 
methods of source localization.

One promising approach is to employ the TdoA method, 
based on the time difference of sound arrivals (TdoA) at 
each microphone. As a method to determine the arrival time 
difference of sound, PingPongPlus [29] uses the vibration 
of a ping pong ball touching a ping pong table. Acustico 
[30] uses the vibration of a surface being touched by users. 
VersaTouch [31] uses microphones to record the sound 
propagating from a speaker attached to a finger touching a 
surface. The microphones determine TdoA by detecting the 
time when the voltage change of the microphone exceeds 
a certain level. In addition, Cross-power Spectrum Phase 
(CSP) analysis is a famous method to estimate the location 
of sound using two microphones [32]. The CSP method 
compares signals measured by multiple microphones, calcu-
lates the gap between the signals of each microphone using a 
generalized cross-correlation function, and uses this gap as 
the TdoA. However, most of the above-mentioned methods 
are based on the assumption that there is only one sound 
source; thus, they cannot estimate the location of multiple 
sources [4]. This is because the acoustic signals interfere 
with each other when there multiple simultaneous sources.

Surface Acoustic Wave (SAW) is famous acoustic-
based localization technology. SAW utilizes the attenuation 
characteristics of acoustic signals to identify touch locations. 
This technique is simple in its configuration and can 
accommodate a variety of objects [20]. However, since SAW 
measures sound waves traveling on the surface as composite 
waves, an increase in the types and locations of objects that 
interfere with these waves can potentially lead to higher 
learning and computational costs.

Therefore, we attempted to develop a sound source 
localization system that avoids interference between acoustic 
signals by separating the frequencies emitted from acoustic 
markers.

Recognition methodology

This section describes a property of ultrasonic waves and 
a proposed method for sensing them on the surface of an 
object based on active acoustic sensing techniques. We also 
describe the implementation and preliminary experiments 
of a device that achieves the proposed method.

Sensing principle

The following equation shows the damping of a signal in 
free space:

where r is the distance and � is the wavelength. The 
following equation gives the relationship between 
wavelength and frequency:

where c is the speed of sound. Therefore, considering Eq. 1 
and Eq. 2, we get the following equation:

Eq. 3 shows that, the higher the frequency of the acoustic 
signal, the greater the damping due to distance. This is 
because the acoustic signal loses more energy due to the 
absorption and attenuation of heat when it propagates due 
to the stretching effect of the medium.

This paper describes a sound source localization system 
that utilizes this property. First, a synthetic wave containing 
low and high-frequency sine waves is emitted from an 
acoustic marker attached to an object. Second, we measure 
ultrasonic waves by a microphone on the surface. As the 
distance between the microphone and the sound source (from 
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the acoustic marker) becomes longer, the higher frequency 
components of the acoustic signal become more damped. 
Therefore, as the distance between the microphone and the 
sound source becomes longer, the difference in the power 
spectrum between the low and high frequency components 
of the acoustic signal is expected to increase. This is why 
we believe that it is possible to estimate the location of an 
object using the difference between the power spectrum of 
the low-frequency and high-frequency sound components 
as a feature value and performing regression analysis using 
machine learning.

We propose a system that uses active acoustic 
sensing to recognize object location by attaching sound-
emitting markers to obtain and analyze these frequency 
characteristics. The system analyzes the frequency response 
as follows: An object’s piezoelectric element (acoustic 
marker) emits a synthetic wave containing multiple 
frequencies. The piezoelectric element (microphone) 
attached to the flat plate receives the response on which the 
object is placed. The system transforms this response into 
the frequency domain by Fast Fourier Transform (FFT) and 
analyzes the frequency characteristics.

Note that, as an acoustic signal propagates through an 
object, the change in the power spectrum at each frequency 
is affected not only by the distance between the microphone 
and the source but also by the natural frequency of the 
object. The natural frequency refers to the frequency at 
which an object tends to vibrate and, near this frequency, 
the object resonates and the amplitude increases. Therefore, 
if the frequency of the acoustic signal emitted from a marker 
matches this natural frequency of an object or surface, the 
power spectrum at that frequency will increase regardless 
of the distance between the microphone and the source. To 
reduce the influence on the regression analysis of the object’s 
natural frequency or surface, we used a synthetic wave 
containing many different frequencies. We used artificial 
waves having frequencies with a total of 36 composite sine 
waves, from 5 kHz to 40 kHz at the interval of 1 kHz. Since 
the natural frequency of a surface is a few hundred Hz in 
width at most, even if one of the frequencies of the used 
acoustic signal coincides with the natural frequency, our 
system can estimate object location from the change in the 
power spectrum of the other frequency bands with distance.

Implementation

Fig. 1 shows the outline of the implemented system. The sys-
tem consists of an acoustic marker unit made up of a speaker 
attached to an object, a microphone unit that receives acous-
tic signals emitted from the marker, and an analysis unit 
that senses the acoustic signals received by the microphone 
unit. In the experiments conducted in this paper, all con-
nections and power feeds between amplifiers and acoustic 

marker, amplifiers and speakers, etc., were wired. For the 
acoustic marker, we used a bimorph piezoelectric element 
with a diameter of 21 mm and a thickness of 0.3 mm. We 
attached the same piezoelectric element to the surface as a 
microphone using adhesive (Kokuyo’s Sticking Insect, Ta-
380N). This adhesive can be easily attached again and again, 
and this system can be applied to any rigid object or surface. 
When we place an object with an acoustic marker on a sur-
face, acoustic signals propagate through the object to the 
surface. A TASCAM audio interface (US-16x16) receives 
the acoustic signals transmitted on the surface with a sam-
pling frequency of 96 kHz. Our system sequentially extracts 
the data from the piezoelectric response using a Hamming 
window with a frame size of 512 points and converts it to 
the frequency domain using FFT. First, the system calcu-
lates the power spectrum of the frequency assigned to each 
object. It identifies which object is placed on the surface 
based on a predetermined threshold. The spectrums of the 
frequencies assigned to the objects are then sent to a com-
puter (MacBook Pro, CPU: Intel Core i5 1.4GHz). We use 
random forest regression models (nTree = 200) to estimate 
the object locations by regression analysis on the x-axis and 
y-axis, respectively.

Preliminary test

Using our prototype, we evaluated whether the proposed sys-
tem could estimate the object’s location. We placed an object 
on an acrylic plate ( 20 cm × 40 cm × 3mm ) and evaluated 
the estimation accuracy of the object’s location. First, we 
attached an acoustic marker, which emits synthetic waves 
as described in the previous section, to a wooden block 
( 1 cm × 2 cm × 3 cm ). Next, we attached a piezoelectric ele-
ment to the edge of the surface to serve as a microphone. We 
placed the object at 10 locations arranged in a straight line at 

Fig. 1  System overview
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2 cm intervals from the microphone and measured 40 times 
for each. The measurement data were Fourier transformed 
to obtain the power of the lowest frequency (5k Hz) and the 
other frequencies (6k, 7k,..., 40k Hz). We used the differ-
ence of these 35 spectral strengths as the machine learning 
features.

We tried four algorithms to create the estimator: Multiple 
regression analysis, random forest regression, support vector 
regression (SVR), and gradient boosting regression. We 
cross-validated the measurement data in five parts and show 
the results in Table 1.

Here, the closer the value of R2 is to 1, the better the accu-
racy, and the smaller the root mean square error (RMSE) and 
mean absolute error (MAE) are, the closer the actual position 
and the position estimated by the regression. Looking at the 
results, the regression using random forest had a good R2 of 
0.971, RMSE of 0.49 cm, and MAE of 0.17 cm. This can be 
attributed to the fact that random forest works well even with 
a large number of features. The number of features used in 
this training was 35. Figure 2 shows the measured values and 
estimated positions when using random forest. None of the 
positions deviate significantly from the measured position. We 

estimated the location with high accuracy even with only one 
microphone. This indicates that the frequency characteristics 
obtained by our system have high uniqueness and continuity 
with the positions of an object and that the proposed system 
can be used for location estimation.

Multiple objects localization

When recognizing the state of a surface where we placed 
multiple objects simultaneously, we usually need to acquire 
training data of all possible combinations of object placement. 
For example, to distinguish any state where a notebook and/or 
a pen are placed, we need training data for all states of placing 
each of the two objects and placing both simultaneously. 
However, as there are more recognition targets, the number 
of combinations increases exponentially, thereby making it 
quite difficult to collect the training data. In this section, we 
propose a method to independently estimate the location of 
each object by emitting signals of different frequencies from 
multiple objects.

When multiple speakers emit sounds in close frequency 
bands, their sound waves interfere with each other, making 
position estimation impossible. Therefore, separate frequencies 
were assigned to each of the multiple objects. For example, 
suppose that two objects emit sound waves of the following 
frequencies:

• Object A: from 5 kHz to 40 kHz at an interval of 1 kHz
• Object B: from 5.5 kHz to 40 kHz at an interval of 1 kHz

If Object A and Object B exist on the same surface, the 
spectrum of the acoustic signal measured by the microphone 
has 72 peaks of frequencies: 5k, 5.5k, 6k, 6.5k....40k, 40.5k. 
These spectra obtained by Fourier transform are each divided 
in frequency bands of every 500 Hz, as shown in Fig. 3, and 
the spectra of the frequencies assigned to Objects A and B 
are calculated. After that, we attempted to reduce the training 
data by estimating the positions of Object A and Object B 
independently.

Evaluation

Using blocks of cubes, we performed Experiment 1 (E1) 
to examine the accuracy of position estimation for a single 
object, Experiment 2 (E2) to evaluate the learning cost, 
and Experiment 3 (E3) to examine the accuracy of position 
estimation for multiple objects.

Table 1  Location estimation results for each algorithm

R
2 RMSE (cm) MAE (cm)

Multiple regression 0.895 0.89 0.59
Random forest regression 0.971 0.49 0.17
Support vector regression 0.901 0.67 0.44
Gradient boosting regression 0.961 0.54 0.35

Fig. 2  Actual position and estimated position
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E1: single‑object localization test

Design and procedure

The purpose of E1 was to test the accuracy of position esti-
mation with a single object placed on our system. We used 
Lego blocks (30 mm cubes per side) as the target objects to 
which the markers were to be attached (Fig. 4) and the test 
area was a 200 mm square with a coordinate system whose 
origin was the left edge (Fig. 5). We attached piezoelectric ele-
ments, which serve as microphones, at a distance of one object 
(3 cm) from the four corners of the sensing area of the 200 mm 
square. This prevents the objects from directly contacting the 
microphones when the objects are placed at the four corners. 
The test area covered the coordinates from (0,0) to (20,20) 
and the object placement coordinates were 5 × 5 positions (25 
positions in total) spaced 5 cm apart. We placed objects at 

each position, the system emitted the sound source from the 
object’s marker 40 times each and we obtained the frequency 
response for each placement. We trained on the x-axis and 
y-axis for the frequency response data and performed 5-seg-
ment cross-validation.

Results and discussion

Table 2 shows the results of the cross-validation. Figure 6 
shows the measured and estimated values. The MAE of 0.29 
cm in both the x-axis and y-axis directions is equivalent to an 
error of 0.41 cm ( ≒ 0.29 ×

√

2 ) in two dimensions. Consid-
ering that the object radius used in the experiment is 1.5 cm, 
this error of 0.41 cm is still acceptable. There was no scatter 
in error depending on the object’s position and we can con-
firm that the position was estimated with high accuracy at all 
positions. The size of the object itself may cause this error. 
We considered the sound source position to be the center of 
the object, but it is not clear whether the sound propagates 
from the object’s center or not because the sound actually 
propagates from the acoustic marker to the surface through 
the object.

Fig. 3  Split spectrum of a multi-object arrangement

Fig. 4  Acoustic marker and sensing objects used in E1 and E2

Fig. 5  The sensing area of the 200 mm square for evaluating object 
localization on 25 points that were 50 mm away from each other

Table 2  Result of single object localization in E1

R
2 RMSE (cm) MAE (cm)

x-axis 0.996 0.66 0.29
y-axis 0.996 0.63 0.29
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E2: training cost test

Design and procedure

As described in E1, we found that the proposed system using 
the signal damping difference can estimate the location of a 
known position on a surface with high accuracy. In this case, 
it is necessary to prepare training data for each position of 
the number of objects to be recognized. However, it is not 
realistic to prepare such a large amount of data for actual 
use. Therefore, in E2, we tested whether it is possible to 
estimate not only the known positions but also the unknown 
positions and evaluated the proposed system by the training 
cost.

As an experimental procedure, we first attached acoustic 
markers to Lego blocks (3 cm cubes per side) in the same 
experimental environment as E1. Next, we placed objects at 
21 positions on the diagonal at coordinates (0,0)(1,1)(2,2)...
(20,20) and measured 40 times at each position.

After that, we divided the training data and the evaluation 
data as follows and calculated the error when only some 
of the position data were used in the training data and the 
unknown positions were included in the position estimation. 
For example, in State 6, out of the 21 data points measured, 
we used data from 4 points ranging from (0,0) to (18,18) in 
6 cm increments (Fig. 7).

• State 1: All positions are used for training data. ((0,0)
(1,1)...(19,19)(20,20))

• State 2: Each 2 cm position is used as training data. ((0,0)
(2,2)...(18,18)(20,20))

• State 3: Each 3 cm position is used as training data. ((0,0)
(3,3)...(15,15)(18,18))

• State 4: Each 4 cm position is used as training data. ((0,0)
(4,4)...(16,16)(20,20))

• State 5: Each 5 cm position is used as training data. ((0,0)
(5,5)...(15,15)(20,20))

• State 6: Each 6 cm position is used as training data. ((0,0)
(6,6)(12,12)(18,18))

Results and discussion

Table 3 and Fig. 8show the experimental results. Here, 
MAE indicates the error between the actual and estimated 
positions. From Fig. 8, we found that the estimation error 
increases as the number of positions used for training 
decreases. This can be attributed to reducing the number 
of data used for training. However, in State 3, the error was 
larger than in States 4 and 5, where there was fewer training 
data. This may be because the last position of the placement 
data used for the training data in States 4 and 5 was (20,20), 
while the last position in State 3 was (18,18). When creating 
a regression model for position estimation using machine 
learning, it is more likely that a good regression model will 

Fig. 6  Estimated location of E1 object

Fig. 7  The sensing area of the 200 mm square for evaluating object 
localization on 5 points that were 50 mm away from each other (State 
5)

Table 3  Result of location detection in E2

R
2 RMSE (cm) MAE (cm)

State 1 0.982 0.59 0.24
State 2 0.970 1.04 0.58
State 3 0.805 2.67 1.42
State 4 0.935 1.53 0.98
State 5 0.851 2.33 1.61
State 6 0.728 3.15 1.98
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be made if there is an end and a beginning of continuous 
data. Therefore, the regression models created in States 
4 and 5 may have been more accurate than the regression 
models made in State 3. This indicates that, for training, it 
is better to place objects on the surface at each of its sensing 
range vertices in our system.

The Figs. 9, 10, 11 shows that the wider the interval 
between training data, the more the estimation results were 
stair-stepped, i.e., the output was pulled to the nearest 
training point rather than pure regression. Our results 
suggested that there is some correlation between sound wave 
attenuation and object location. Elucidating this property 
may allow for a more linear regression model.

The MAE in State 4 was 0.98 cm. This indicates that the 
system is able to estimate object position on the diagonal 
of a 200 mm square with an error of 0.98 cm by placing 
objects in only 5 positions. This estimation error is suf-
ficiently small considering that one side of the object is 
3.0 cm. This also suggests that the frequency response 
obtained by our system has a high continuity and linearity 
concerning the object’s position on the surface. Therefore, 
it is unnecessary to learn all the locations to be recognized 
and the training cost can be reduced.

Fig. 8  Result of MAE with decreasing training cost

Fig. 9  Result of State 1

Fig. 10  Result of State 4

Fig. 11  Result of State 6
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E3: multiple objects recognition test

Design and procedure

In E3, we evaluated the accuracy of our method for multiple 
object placement by testing it on actual objects on a surface. 
This experiment first attached acoustic markers to four 2.0 
cm wooden cubic blocks per side (Fig. 12) in the same 
experimental environment as E1 and E2. We placed the 
objects at five positions (0,0), (5,5), (10,10), (15,15), and 
(20,20) in the diagonal direction of the surface plane. The 
estimated number of objects was set to 2–4. The frequency 
assignment of acoustic markers for each object number was 
set as follows.

Two objects (Each 500 Hz)

• Object A: 5k, 6k,..., 39k, 40k Hz
• Object B: 5.5k, 6.5k,..., 39.5k, 40.5k Hz

Three objects (Each 333 Hz)

• Object A: 5k, 6k,..., 39k, 40k Hz
• Object B: 5.333k, 6.333k,..., 39.333k, 40.333k Hz
• Object C: 5.666k, 6.666k,..., 39.666k, 40.666k Hz

Four objects (Each 250 Hz)

• Object A: 5k, 6k,..., 39k, 40k Hz
• Object B: 5.25k, 6.25k,..., 39.25k, 40.25k Hz
• Object C: 5.5k, 6.5k,..., 39.5k, 40.5k Hz
• Object D: 5.75k, 6.75k,..., 39.75k, 40.75k Hz

We next describe the experimental procedure. In the case of 
two objects, we first placed only Object A at the five positions, 
(0,0), (5,5), (10,10), (15,15), and (20,20), and measured 40 

times at each position. In the same way, we placed only Object 
B in the same five locations as before and measured 40 times at 
each location. Next, we placed Object A and Object B on the 
surface at the five positions, (0,0), (5,5), (10,10), (15,15), and 
(20,20), simultaneously and measured 40 times at each posi-
tion. The placement pattern of the two objects is 20C2 = 190 . 
For all the measurement data obtained in this way, we esti-
mated the position of Object A and Object B for the pattern 
where both were placed simultaneously and calculated the 
error using the data where each Object A and Object B was 
placed on the surface for training. In the case of three objects 
and four objects, we estimated the position of each object from 
the data of a single object in the patterns where three or four 
objects were placed and calculated the estimation error.

Results and discussion

Fig. 13 shows the MAE for different numbers of objects, 
together with the mean absolute error for a single object as 
described in Sec. 3.3. The mean error with one object was 
0.29 cm; with two objects, the mean error was 0.84 cm; with 
three objects, the mean error was 1.67 cm; and with four 
objects, the mean error was 1.83 cm. These results show 
that, the more objects there are on the surface, the bigger the 
error becomes. This may be because the frequency of each 
object becomes greater as the number of objects increases 
and the acoustic signals interfere with each other. In this 
study, the acoustic signals emitted from the marker were 
synthesized from 36 sine waves in 1 kHz segments. In the 
future, this error can be reduced by reducing the number 
of sine waves and widening the difference in frequency 
between each object. However, if the number of synthesized 
sine waves is reduced, the number of features used for 
learning is also reduced, which may increase the estimation 
error. Another possible cause of the error is that the acoustic 
signal propagating from one object diffracts off the other 
object, changing the propagation distance until it reaches the 
microphone and affecting the estimated position.

Fig. 12  2.0 cm wooden cubic blocks per side with acoustic marker

Fig. 13  Object localization accuracy evaluated on 1–4 different 
objects
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The results obtained by E3 show that the mean error 
between each object’s estimated and measured position was 
1.82 cm even when four objects are placed on the surface. 
This is smaller than that of a related study [33]. Through 
this experiment, we show that it is possible to estimate the 
locations of multiple objects using the training data of a 
single object. In addition, the training data required to recog-
nize four object placements for five positions using machine 
learning is generally 120 data ( = 5P4 ). In contrast, in our sys-
tem, 4(numberofobjects) × 5(locations) = 20 data. Therefore, 
our system saves 83.3% of the training data collection effort.

Discussion

Potential applications

The E1 and E2 results show our system is capable of 
estimating 21 object positions with an error of 0.98 cm 
by placing objects at only 5 positions and training them. 
Furthermore, the E3 results suggest that our system 
recognizes the placement of four objects with an accuracy 
of 1.83 cm, saving 83.3% of the effort needed to collect the 
training data. While further exploration would be needed to 
improve accuracy, these findings adequately demonstrate the 
potential as a context-aware sensing device that can be used 
for applications as follows:

First, the system will easily make everyday objects 
tangible by attaching piezoelectric elements to objects and 
surfaces. For example, we attach a marker to an existing 
figure and let the PC recognize the type and position of the 
figure and combine it with artificial reality (AR) technology 
to create a tangible toy for interaction. In general, such toys 
can only be applied to objects with built-in sensors, but our 
system has no such limitations. It can easily, tangibly use 
everyday objects that we are familiar with. What is required 
then is that the part of the object that touches the surface 
be of a material that propagates sound. As we did in this 
experiment, this can be realized by embedding a wireless 
earphone-like mechanism somewhere on or inside a object.

Second, our system can be used without a marker by 
attaching to any device that has a speaker function. For 
example, by emitting acoustic signals from a smartphone 
and sensing them with our system, the position of the smart-
phone can be continuously acquired14. Therefore, this sys-
tem can extend the interaction of existing acoustic devices, 
such as operating a PC using a smartphone as a controller.

Limitation and future work

The first limitation of our system is that the acoustic signals 
emitted from the marker are in the audible range. Therefore, 
we need to improve the hardware, such as wrapping 

the marker itself with soundproof material to prevent 
the acoustic signal from leaking into the air or changing 
the acoustic signal so that it is not in the audible range. 
Generally, the human audible range is between 20 Hz and 
20 k Hz. Therefore, this problem can be solved by using an 
acoustic signal synthesized from a low-frequency sine wave 
(below 20 Hz) and a high-frequency sine wave (above 20k 
Hz). However, better hardware such as contact microphones 
with higher sensitivity is needed to simultaneously sense 
lower and higher frequencies.

The second limitation is the Doppler shift when we move 
the object quickly. Our system recognizes the frequency of 
the acoustic signal emitted from the marker and identifies 
the object. Therefore, the Doppler shift that occurs when 
moving objects may cause a change in the frequency, leading 
to misrecognition of the object. In the future, we need to 
study the change in frequency characteristics caused by 
the object’s movement and create a mathematical model to 
calculate the frequency change caused by the Doppler shift.

The third limitation is the validity of this synthesized 
wave. Our system uses a synthesized sine wave as the 
acoustic signal emitted from the marker, but we need 
to examine it. Therefore, we will change the number of 
synthesized sine waves and their frequency range, investigate 
the effect on the estimation error, and compare it with the 
error when placing multiple objects.

The fourth limitation, all moving objects must emit 
sound. If an object without a speaker is placed on the 
surface, the acoustic properties on the surface will change 
depending on the object, and the machine learning will need 
to be redone. In our previous research [34], a speaker and 
microphone were mounted on a similar surface, and several 
objects without speakers were placed on the surface. By 
calculating the attenuation of sound waves traveling over the 
surface, we were able to identify the type and location of the 
multiple objects placed, but there was no law for the effect of 
moving object location on the acoustic properties. Therefore, 

Fig. 14  Application examples: Recognizing the location of a smart-
phone
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it is difficult to apply the present method in situations where 
objects without speakers are randomly placed and removed.

Finally, because the proposed method must emit sound, a 
battery is required for wireless operation. It cannot be driven 
indefinitely, and the battery life would be comparable to that 
of wireless earphones.

Conclusion

In this paper, we proposed an acoustic marker system that 
uses active acoustic sensing to recognize the placement of 
objects. The prototype consists of an audio interface and 
piezoelectric elements easily and tangibly attached to objects 
and surfaces. Using the prototype, we confirmed that the 
system recognizes the placement of a single object with a 
mean absolute error of 0.41 cm. We also verified the training 
cost of our system and found that 21 positions could be 
estimated with an error of 0.98 cm by training only five 
positions. We then tested the recognition performance of 
our system when placing multiple objects simultaneously 
and evaluated it. As a result, we found that each object could 
be estimated with a mean error of 1.82 cm even when four 
objects were placed on the surface simultaneously. This 
experiment shows that our system can recognize multiple 
objects simultaneously from single-object training data.

In the future, we will improve the hardware by wrapping 
the marker with soundproof material to prevent acoustic 
signals from leaking into the air. We will then investigate 
the validity of the acoustic signals emitted from the markers 
by changing the number of synthesized sine waves and their 
frequency range. In this way, we can reduce the error further 
by optimizing the acoustic signal used.
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