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Figure 1: Implemented MaGEL (left) and Gestures (right). MaGEL identifes the deformation gestures and can be used for input 
device. 

Abstract 
We  propose  MaGEL,  a  soft-input  device  that  utilizes  light  inten-
sity  to  detect  and  interpret  user  deformation  interactions.  Unlike  
traditional  rigid  input  devices,  MaGEL  enables  three-dimensional  
interactions  such  as  twisting,  bending,  and  pulling.  Additionally,  
MaGEL  incorporates  elastic  haptic  feedback,  providing  users  with  
tactile  sensations  that  refect  the  tension  or  resistance  of  their  inter-
actions.  These  factors  realize  intuitive  and  natural  user  interaction  
experiences,  and  users  can  employ  familiar  physical  gestures  as  in-
put.  For  example,  bending  the  device  may  simulate  turning  the  page  
of  a  book,  or  stretching  it  may  zoom  in  on  an  image.  The  device  
consists  of  a  transparent  urethane  resin  gel  with  LED  lights  and  
phototransistors  on  both  sides.  When  the  device  gel  deforms,  the  
intensity  of  the  light  passing  through  the  gel  undergoes  a  specifc  
change  due  to  the  deformation.  The  system  analyzes  these  changes  
using  machine  learning  to  identify  the  user  gestures.  We  evaluated  

the  optimal  confguration  and  number  of  LEDs  and  phototransis-
tors  to  classify  the  deformation  accurately.  We  acquired  data  for  
13  types  of  deformation  gestures  from  14  participants.  The  results  
showed  that  a  combination  of  four  LEDs  and  ten  phototransistors  
enabled  MaGEL  to  identify  13  types  of  deformation  gestures  with  
an  accuracy  of  94.1  %.  Using  MaGEL,  we  provide  novel  interactive  
experiences,  such  as  game  controllers  that  employ  bending,  pulling,  
or  twisting  to  mimic  natural  gaming  motions.  

CCS Concepts 
•  Human-centered  computing  →  Haptic  devices;  Gestural  in-
put.  
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1 Introduction 
To enable more intuitive interactions, input interfaces have pro-
gressed beyond traditional methods, such as mouse, keyboard, and 
touch panel. Gestural input, an example of three-dimensional in-
teraction, has become particularly relevant in virtual reality (VR) 
applications. Depth-sensing technologies, such as Kinect and Leap 
Motion, and gyroscopic sensors embedded in devices are commonly 
used to capture hand and body movements. While gesture-based 
input in a virtual space ofers greater freedom of movement, the 
lack of physical feedback poses challenges for precise control and 
fne adjustments. Additionally, prolonged use of such systems may 
cause user fatigue. Thus, incorporating physical objects ofers phys-
ical haptic feedback, potentially enhancing the sense of control 
and the overall interaction experience. In physical feedback sys-
tems, users can perceive the extent of their movements through 
physical sensations or enable the accurate determination of object 
contact, facilitating precise control through minimal movement. 
Moreover, unlike gesture-based input methods, haptic interfaces 
allow quantifcation of the applied force for an input action. 

In this context, tangible user interfaces (TUIs), which leverage 
physical objects for user interactions, have attracted substantial 
attention. TUIs ofer the advantage of allowing users to manipulate 
digital information intuitively, thereby providing both visual and 
tactile feedback concurrently. However, most TUIs are constructed 
from rigid materials such as plastic and metal, limiting their ability 
to support deformation interactions, such as pulling, bending, and 
twisting. The development of input devices from soft materials can 
enable three-dimensional interactions. This capability allows for 
more intuitive interactions, such as bending a device like a book 
to turn pages or stretching it to zoom into an image, potentially 
leading to enhanced user engagement and usability. 

In  this  study,  we  propose  a  novel  input  device,  MaGEL(Fig.  1),  
that  utilizes  soft  materials  for  deformation-based  input  with  elastic  
haptic  feedback,  providing  users  with  tactile  sensations  that  refect  
the  tension  or  resistance  of  their  interactions.  By  utilizing  soft  
materials,  interaction  with  more  natural  and  physical  sensations  
is  possible,  and  users  can  operate  the  device  intuitively  through  
physical  sensations.  This  has  the  potential  to  create  new  experiences  
in  felds,  such  as  gaming  and  music  production.  

MaGEL consists of a soft gel, LEDs, and phototransistors. The 
gel was made of transparent urethane resin and LEDs and photo-
transistors were placed on both sides of the gel. When the device is 
deformed, it alters the intensity of light passing through the gel. By 
applying machine-learning techniques to analyze the changes in 
phototransistor values, MaGEL can detect the deformation of the 
device and estimate user gestures. 

The contributions of this study are as follows: 

(1) We developed a soft-input controller, MaGEL, which identi-
fes the three-dimensional gestures using LEDs, phototran-
sistors, and machine learning. 

(2) We conducted an experiment to determine the optimal num-
ber and arrangement of LEDs and phototransistors for ges-
ture identifcation in MaGEL and the blinking pattern of the 
LEDs. 

(3) The results of the evaluation experiments showed that the 
system identifed 13 gestures, with 94.1 % accuracy for within-
individual identifcation and an 85.1 % accuracy rate for 
between-individual identifcation. 

2 Related work 

2.1 Tangible User Interface 
Extensive  research  has  been  conducted  on  tangible  objects  that  di-
rectly  manipulate  physical  objects  to  enhance  intuitive  operation[7].  
Weiss  et  al.  proposed  an  FTIR  device  that  utilizes  a  rear  camera  to  
capture  the  difuse  refection  of  light  projected  onto  the  back  of  a  
transparent  panel  at  the  interface  between  the  panel  and  device[26].  
The  displayed  content  changes  based  on  the  widget’s  position  and  
interactions.  Hwang  et  al.  proposed  MagGetz,  which  represents  an  
approach  that  leverages  a  smartphone’s  built-in  magnetic  sensor  to  
receive  input  from  physical  controls  such  as  buttons  and  sliders[6].  
This  method  enables  tangible  input  without  requiring  an  external  
power  source,  as  it  relies  solely  on  smartphone  sensors  and  magnets.  
SurfaceIO,  as  proposed  by  Ding  et  al.,  is  a  methodology  designed  
to  enhance  tactile  feedback  for  touch-based  interactions  by  incor-
porating  subtle  surface  irregularities  into  objects[2].  This  approach  
facilitates  touch  and  slide  interactions  through  vibration,  and  de-
spite  the  presence  of  fne  surface  textures,  enables  tactile  operation  
without  visual  dependency.  Thus,  direct  manipulation  of  interface  
elements  enhances  the  user  experience  by  providing  immediate  
feedback  on  operations  and  facilitating  intuitive  interactions.  Users  
can  readily  associate  operational  methods  with  the  visual  cues  pre-
sented  by  knobs,  buttons,  and  other  interface  components.However,  
these  devices  are  all  constructed  from  rigid  materials  such  as  plastic  
or  metal,  and  they  lack  the  fexibility  characteristic.  

2.2  Soft  Input  Devices  
Input  devices  made  of  soft  materials  such  as  silicone,  cloth,  or  skin  
rather  than  rigid  materials  such  as  plastic  and  metal  are  being  used  
to  extend  input  expression  by  incorporating  natural,  intuitive  ges-
tures  and  soft  haptic  feedback[1].  Those  soft  input  devices  are  being  
evaluated  for  their  potential  implementation  in  various  applications,  
including  controllers  for  home  appliances,  haptic  touch  interfaces  
on  LCD  displays,  music  production,  gaming,  and  numerous  other  
felds.  

Harrison  et  al.  proposed  a  method  for  creating  three-dimensional  
buttons  by  deforming  a  soft  membrane  using  air  pressure[4].  Mim-
icTile,  designed  for  mobile  devices,  employs  shape  memory  alloys  
(SMAs)  to  impart  smooth,  lifelike  movements  to  metal  components,  
and  enable  deformation-based  input[15].  Gummi  is  a  fexible  dis-
play  technology  that  enables  deformation-based  inputs  while  si-
multaneously  presenting  visual  information[20].  This  functionality  
facilitates  features,  such  as  screen  magnifcation,  through  bending  
gestures.  Mazursky  et  al.  proposed  MagnetIO,  a  soft  patch  with  
magnets  embedded  in  soft  silicone  that  can  be  attached  to  curved  
surfaces[14].  It  provides  force  feedback  through  the  attachment  of  
a  coil  to  the  user’s  fnger.  He  et  al.  proposed  a  method  to  recognize  
squeezing  interaction  by  attaching  a  tube  to  an  air  puf  and  acquir-
ing  air  vibrations  with  an  acoustic  sensor[5].  Kildal  et  al.  developed  
a  deformable  controller  and  established  guidelines  for  its  future  po-
tential  and  design  considerations[12].  In  addition,  they  conducted  
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evaluations  of  gesture  identifcation  systems  and  their  controller  
applications[11].  Shorey  et  al.  demonstrated  that  incorporating  de-
formable  inputs  into  action  control  schemes  enhanced  the  overall  
user  experience[21].  Weinberg  et  al.  proposed  a  methodology  for  
music  creation  that  utilizes  a  soft,  spherical  device  that  responds  to  
squeezing  and  pulling  actions[25].  Furthermore,  they  engineered  a  
fexible  controller  incorporating  a  rubber  bridge,  enabling  four  dis-
tinct  types  of  deformation  inputs,  such  as  bending  and  twisting,  in  
addition  to  the  conventional  button  operations.  While  these  game  
controllers  recognize  four  types  of  deformations,  including  bending  
and  twisting,  our  proposed  MaGEL  system  is  capable  of  recognizing  
a  diverse  range  of  deformation  gestures,  enabling  its  use  in  a  wider  
range  of  applications.  Thus,  soft-input  devices  demonstrate  poten-
tial  for  application  across  diverse  domains.  This  study  proposes  
a  methodology  for  detecting  deformations  in  soft  materials  and  
utilizing  such  deformations  as  input  mechanisms.  

2.3  Methodologies  for  Capturing  Soft  Object  
Deformation  

Several  methodologies  have  been  proposed  for  obtaining  the  de-
formation  of  soft  objects  using  camera-based  systems  or  position  
sensors  to  ascertain  the  deformation  position  of  an  elastic  body.  
GelForce  proposed  by  Kamiyama  et  al[10].,  Forcetile  proposed  by  
Kakehi  et  al[9].,  and  DeforMe  proposed  by  Punpongsanon  et  al[17].  
are  all  which  employ  a  technique  involving  the  embedding  of  mark-
ers  within  an  elastic  body  and  subsequently  tracking  their  positions  
via  camera.  Sato  et  al.  proposed  an  approach  that  utilizes  a  polarized  
camera  to  capture  the  position  and  displacement  of  elastic  body  
deformation  on  an  LCD  display,  leveraging  the  photoelastic  prop-
erties  of  the  material[19].  Reed  introduced  a  method  that  involves  
embedding  multiple  wireless  locators  within  clay  to  estimate  its  
shape  based  on  their  positions[18].  Luo  et  al.  proposed  a  method  
of  weaving  conductive  threads  into  fabric  to  extend  it  as  a  fexible  
input  surface[13]  Although  these  methods  efectively  capture  the  
deformation  of  soft  materials  and  can  serve  as  input  devices,  they  
are  limited  by  occlusion  issues  inherent  to  camera-based  recogni-
tion  systems.  Furthermore,  their  functionality  is  constrained  by  the  
range  of  a  stationary  camera  or  receiver.  

Harrison  et  al.  have  proposed  a  method  of  acquiring  pushing  
and  shearing  forces  utilizing  a  3D  stick[3].  Similarly,  Tsuchida  et  
al.  have  proposed  a  method  of  acquiring  pushing  force  strength  
and  direction  using  magnets  and  springs[24].  While  these  studies  
acquire  the  strength  of  force  intensity  alongside  two-dimensional  
input,  but  they  are  merely  an  extension  of  input  onto  a  plane  and  
cannot  be  considered  three-dimensional  input.  

Slyper  et  al.  introduced  a  technique  for  detecting  deformation  in  
soft  materials  by  measuring  the  contact  between  electrodes  embed-
ded  in  silicone  resin[22].  This  method  allows  for  the  detection  of  
deformation  through  the  contact  or  separation  of  electrodes  within  
slits  as  the  silicone  resin  is  bent  or  stretched.  Kadowaki  et  al.  devel-
oped  an  embedded  fexible  tactile  sensor  utilizing  infrared  LEDs[8].  
This  sensor  detects  interactions  by  measuring  the  changes  in  the  
amount  of  refected  infrared  light  when  an  object  is  deformed.  The  
aforementioned  investigations  facilitated  tactile  input  through  the  
integration  of  soft  materials  with  electrodes  and  structural  frame-
works.  In  contrast,  the  device  proposed  in  this  study  incorporates  
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distinct  gel  and  sensor  components,  enabling  the  facile  replacement  
of  the  gel  to  accommodate  various  input  modalities.  

A  methodology  employing  photorefectors  was  proposed  to  
capture  object  movement  and  density  variations.  Infrared  LEDs  
and  phototransistors  are  cost-efective  compared  with  bending  
sensors,  high-performance  IMUs  with  minimal  drift,  and  camera-
based  image  recognition.  Sugiura  et  al.  developed  a  system  that  
estimates  gestures  by  measuring  cotton  cushion  density  using  a  
photorefector[23].  Ogata  et  al.  introduced  SenSkin,  an  infrared  
sensor  band  worn  around  the  wrist  to  detect  skin  movement  on  
the  arm,  thereby  extending  the  touch  panel  functionality  by  uti-
lizing  the  skin  as  a  soft  input  device[16].  While  the  cotton-based  
approach  is  suitable  for  furniture,  such  as  sofas  and  stufed  toys,  
there  are  concerns  regarding  potential  shifts  in  cotton  positioning  
over  time,  which  may  afect  sensor  placement.  Skin-based  methods  
are  limited  to  body  surfaces.  Consequently,  this  study  proposes  a  
novel  approach  utilizing  a  soft  transparent  gel  that  leverages  the  
refective  and  refractive  properties  of  infrared  light  within  the  gel  to  
employ  device  deformation  as  the  input.  By  utilizing  a  moldable  gel,  
it  is  feasible  to  create  deformable  input  devices  of  various  shapes  
tailored  to  specifc  applications,  extending  beyond  the  rectangular  
form  proposed  in  this  study.  

3 MaGEL:Soft-Input Device 
We  propose  MaGEL,  a  soft-input  device  designed  to  recognize  ges-
tures,  such  as  twisting,  bending,  and  pulling.  By  utilizing  the  elas-
tic  properties  of  soft  materials,  MaGEL  provides  an  intuitive  and  
immersive  user  experience.  In  this  section,  we  frst  explain  the  de-
formation  identifcation  principle,  followed  by  an  explanation  of  
the  device  confguration  and  each  component.  

3.1  Sensing  Principle  
The  infrared  light  emitted  by  the  infrared  light-emitting  diode  (LED)  
on  one  side  of  the  device  propagates  through  the  transparent  gel,  
refects  of  its  surface,  and  the  phototransistors  placed  on  oppo-
site  sides  detect  it  using  the  phototransistor  (Fig.  2).  When  a  user  
interacts  with  the  device,  the  deformation  of  the  gel  modulates  
the  infrared  light  transmission,  resulting  in  corresponding  voltage  
variations  in  the  phototransistor.  The  MaGEL  system  uses  machine  
learning  to  interpret  these  voltage  changes,  allowing  it  to  accurately  
estimate  diferent  types  of  deformations  and  user  gestures.  

Fig.  3  provides  a  visual  representation  of  light  transmission  
through  the  transparent  gel  captured  using  an  infrared  camera.  
This  fgure  shows  that  the  appearance  of  light  undergoes  observ-
able  changes  as  the  device  experiences  deformation.  The  camera  
was  positioned  on  one  side  of  the  device,  with  infrared  LEDs  sit-
uated  on  the  opposite  side.  By  fxing  relative  positions  of  the  gel,  
LED,  and  phototransistor,  it  is  feasible  to  detect  alterations  in  LED  
light  using  the  phototransistor  and  estimate  the  gel’s  deformation.  

3.2  Hardware  
The  device  comprises  a  transparent  gel,  two  grips  for  securing  sen-
sors  to  the  gel,  infrared  LEDs,  and  infrared-sensing  phototransistors  
for  detecting  gel  deformation.  Fig.  4  illustrates  the  implemented  
device.  
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Figure 2: Principle: phototransistor detects the change of 
light intensity. 

Figure 3: Appearance of infrared LED light when the device 
is deformed. 

The  device’s  body  was  constructed  from  transparent  soft  ure-
thane  resin  with  an  Asker  hardness  of  0,  allowing  for  easy  manual  
deformation  to  input  various  gestures.  Gesture-based  input,  charac-
terized  by  hand  or  body  movements  in  space,  presents  limitations  
owing  to  the  absence  of  tactile  feedback.  This  defciency  results  in  
imprecise  control,  and  may  lead  to  user  fatigue  caused  by  extensive  
motion.  The  incorporation  of  an  elastic  gel  provides  tactile  feedback  
to  the  gesture,  thereby  enhancing  the  user’s  ability  to  perceive  the  
applied  force  and  improve  overall  control.  The  gel  is  formed  by  
combining  two  liquids,  the  main  agent  and  hardener,  and  in  this  
study,  we  molded  it  into  a  50  ×  100  ×  20  mm  rectangular  shape,  and  
reinforced  its  surface  using  a  transparent  coating  agent.  Although  a  
rectangular  gel  was  used  in  this  study,  the  principle  can  be  applied  
to  devices  other  than  controllers  using  molds  with  diferent  shapes.  

Figure 4: Implemented device. 

Infrared  LEDs  and  infrared-receiving  phototransistors  with  a  
peak  wavelength  of  940  nm  were  used.  This  infrared  spectrum  
choice  was  intended  to  minimize  interference  from  ambient  in-
door  light  when  measuring  light  transmission  through  the  gel,  
which  could  afect  measurements  using  visible  light  components.  
We  conducted  a  investigation  to  determine  the  optimal  positions  
and  number  of  LEDs  and  PTr  on  the  device  in  evaluation  section.  

To ensure the relative positioning of the gel, LED, and photo-
transistor, we fabricated grips using a 3D printer with polyethylene 
terephthalate (PET) and fxed them on both sides of the device. Each 
grip comprised three parts: upper, lower, and side. The upper and 
lower parts featured protrusions designed to secure a transparent 
gel, and the LED and phototransistor were mounted on the side 
parts. These three parts were fastened with cable ties to maintain 
fxed positions of the transparent gel, LEDs, and phototransistors. 

The device dimensions were 135×80×20 mm. This measurement 
was derived from the dimensions of the fat surface area of the 
Nintendo Switch Pro Controller, excluding the handles, which are 
devices designed for bimanual operation and grip. 

A  microcomputer  (Arduino  MEGA  2560)  controlled  the  infrared  
LED  and  the  phototransistor.  The  phototransistor’s  voltage  is  ac-
quired  by  the  Arduino  as  a  1024-step  analog  value  and  transmitted  
via  serial  communication  to  a  personal  computer  (Windows  11  Pro  
OS,  Intel(R)  Core(TM)  i7-9750H  CPU  @  2.60  GHz  2.59  GHz).  The  
PC  processes  the  received  value  to  estimate  the  deformation  of  the  
device  using  the  following  software  requirements.  

3.3  Software  
The LEDs incorporated in the device were individually controlled 
using the aforementioned microcomputer. Serial communication 
between the microcomputer and personal computer was established 
at a baud rate of 115,200 bps. The gesture recognition algorithm 
was implemented using Python version 3.12.0. 

The  proposed  system  is  designed  to  classify  multiple  deforma-
tions.  The  voltage  magnitude  applied  to  the  phototransistors  was  
used  as  a  feature,  and  for  each  feature  dimension  of  the  training  
data,  the  measured  data  were  standardized  to  achieve  a  mean  of  0  
and  a  variance  of  1  Machine  learning  techniques  are  employed  to  
classify  the  gestures  based  on  the  deformation  of  a  device,  which  
corresponds  to  phototransistor  values.  We  conducted  a  investiga-
tion  to  evaluate  and  compare  various  machine  learning  classifers  
with  the  objective  of  selecting  the  classifer  that  demonstrates  the  
highest  recognition  accuracy.  
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Figure 5: Gestures to identify. 

4 Evaluation experiment 
Evaluation  experiments  were  conducted  to  confrm  the  perfor-
mance  of  the  proposed  system  in  detecting  soft  gel  deformation.  
Gesture  data  were  collected  from  14  participants  for  analysis.  The  
initial  phase  of  the  study  focused  on  identifying  the  most  suitable  
machine  learning  classifer  and  the  positions  of  the  components  to  
optimize  accuracy.  Following  this,  intra- and  inter-person  identif-
cation  tests  were  performed  under  these  conditions  to  assess  the  
accuracy  of  MaGEL  gesture  recognition.  Lastly,  the  response  speed  
of  gesture  recognition  was  also  evaluated  to  confrm  the  real-time  
performance  of  the  MaGEL.  

4.1  Gesture  Data  Collection  from  Multiple  Users  
4.1.1  Overview.  In  this  experiment,  we  aimed  to  identify  13  distinct  
types  of  deformation  gestures  using  the  MaGEL  device.  Fig.  5  shows  
each  of  the  deformation  gestures.  The  selected  gestures  encompass  
rotation  and  translation  along  the  three  axes  in  three-dimensional  
space.  We  chose  six  rotational  gestures,  including  reverse  rotations,  
and  six  translational  gestures,  including  reverse  directions,  in  addi-
tion  to  a  neutral  (no  deformation)  position,  resulting  in  13  gestures.  
These  13  gestures  were  selected  to  leverage  the  soft  material’s  abil-
ity  to  bend,  twist,  and  stretch,  ofering  a  comprehensive  range  of  
deformations  that  allow  natural  and  intuitive  inputs.  

Each  side  of  the  grips  in  the  experimental  device  incorporated  
four  LEDs  and  fve  phototransistors  arranged  in  a  linear  confgura-
tion.  In  total,  the  device  utilized  eight  LEDs  and  ten  phototransistors.  
This  confguration  is  the  maximum  number  of  LEDs  and  photo-
transistors  that  can  be  accommodated  without  electrode  contact,  
considering  the  vertical  width  of  the  transparent  gel.  The  LEDs  and  
phototransistors  were  positioned  in  an  alternating  pattern,  with  
each  component  assigned  sequential  numbers.  Fig.  6  shows  the  
layout  of  these  sensors.  

The voltage values from the ten phototransistors were acquired 
for each of the 255 lighting patterns, encompassing all possible 

Figure 6: The Layout of LEDs and phototransistors(PTrs) for 
Experiment. 

combinations of the eight LEDs being illuminated or extinguished, 
except for confgurations where none of the LEDs were activated. 
Microcomputers regulate the activation and deactivation of LEDs. 

4.1.2  Procedure.  The  participants  were  instructed  to  deform  the  
device  into  13  distinct  gestures,  during  which  the  phototransistor  
values  were  recorded.  After  participants  signed  the  consent  form,  
they  were  presented  with  images  of  13  gestures  and  given  time  to  
practice  gestures.  When  the  experiment  started,  the  experimenter  
displayed  one  of  the  13  gesture  images,  illustrated  in  Fig.  5,  on  a  
monitor  in  a  randomized  sequence.  The  participants  were  required  
to  deform  the  device  in  accordance  with  the  displayed  image  and  
maintain  the  deformation  for  6  seconds,  during  which  time  the  volt-
age  values  from  the  phototransistor  were  acquired.  This  process  
was  repeated  for  all  13  gesture  types.  The  experiment  consisted  of  
ten  sets,  with  each  set  comprising  13  gestures.  To  mitigate  order  
efects,  the  presentation  sequence  of  the  images  was  randomized  
for  each  set  using  a  computer-generated  random  number  algorithm  
to  ensure  that  each  gesture  type  appeared  once  per  set.  This  exper-
iment  passed  the  university’s  ethical  review(H22-008).  
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l.Bendup-

3.Twistright- 0.01 

4. Twist left- 0.00 0.02 

5.Raiseright- 0.01 0.05 0.04 

0.00 0.00 0.00 0.00 0.00 0.0B 0.00 0.00 0.00 0.00 

0.00 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.01 0.01 0.00 0.01 0.00 

6. fl.aiseleft- 0.01 0.04 0.01 0.01 

0.00 0.00 0.00 0.00 0.00 0.00 

0.01 0.01 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

7.Push- 0.06 0.01 0.01 0.01 0.01 

10. Widen bottom - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11.Pullb.ackright- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12. Pull back left- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6 
Predicted 
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Fourteen participants(10 males, 4 females; mean age 22.5 ± 1.3 
years) participated in the investigation. The maximum duration of 
the experiment for one person was 40 minutes. In total, 1,820 data 
points (14 participants × 13 gestures × 10 sets) were collected. Each 
data point has 2,550 features (10 PTrs and 255 LED patterns). 

Table 1: Gesture Recognition Accuracy of Four Classifers 

Classifer Accuracy Tuning Parameters 

SVM 0.932 C, gamma, kernel 

Random Forest 0.896 n estimators, max depth, 
min samples split 

Neural Network 0.834 hidden layer sizes, activation, 
solver, alpha, learning rate 

XG Boost 0.832 max depth, min child weight, 
eta, reg alpha, reg lambda 

4.2  Selection  of  Classifers  for  Machine  
Learning  

To  determine  the  most  suitable  classifer  for  deformation  gesture  
recognition,  we  conducted  a  comparative  analysis  of  gesture  classi-
fcation  accuracy  using  four  classifers:  a  support  vector  machine  
(SVM),  random  forest,  neural  network,  and  extreme  gradient  boost-
ing  (XGBoost).  The  classifers  were  implemented  using  Python  
libraries  scikit-learn  and  xgboost.  Utilizing  the  data  collected  in  
Section  4.1,  we  employed  leave-one-out  cross-validation  for  each  
participant,  designating  one  of  the  10  sets  as  test  data.  The  evalua-
tion  was  based  on  the  average  intrapersonal  recognition  accuracy  
of  14  participants.  Prior  to  implementation,  the  classifers  were  
optimized  using  a  grid  search.  Table  1.  lists  the  tuned  parameters  
and  the  recognition  accuracies  of  the  13  gestures  for  each  classifer.  

For  this  study,  we  selected  SVM  with  the  following  parameters:  
�  =  0.1,  �����  =  1,  ���������  =‘������ .’  

4.3  Arrangement  of  LEDs  and  Phototransistors  
used  in  the  Device  

A  reduction  in  the  number  of  sensors  employed  in  a  device  ofers  
signifcant  advantages  in  terms  of  processing  efciency  and  cost-
efectiveness.  However,  an  excessively  limited  number  of  sensors  
may  compromise  the  classifcation  accuracy  of  deformation  ges-
tures.  Consequently,  this  investigation  utilized  the  data  collected  in  
Section  4.1  to  determine  the  optimal  number  and  position  of  LEDs  
and  phototransistors  (PTr)  to  be  incorporated  into  the  device  as  
well  as  the  appropriate  LED  lighting  patterns.  

Considering the accuracy using phototransistor values for all 
LED illumination patterns as the benchmark, we investigated the 
optimal number and confguration of features that would yield 
comparable performance with fewer sensors. The Support Vector 
Machine (SVM) model outlined in Section 4.1 was employed as the 
classifcation algorithm. To assess classifcation accuracy, the mean 
intra-personal identifcation accuracy across the 14 participants 
was utilized. When incorporating all 2550 features comprising 255 
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Figure  7:  Confusion  matrix  of  intra-personal  gesture  classif-
cation  with  255  LED  lighting  patterns  ×  10  PTr.  

lighting  patterns  with  10  PTrs  as  feature  inputs,  the  classifcation  
accuracy  for  13  gestures  reached  93.2  %.Fig.  7  shows  the  confusion  
matrix.  

From  the  10  PTrs,  1023  distinct  combinations  of  usage  patterns  
were  considered  as  potential  feature  sets,  excluding  instances  where  
none  were  utilized.  The  classifcation  accuracy  for  13  gestures  was  
evaluated  using  260,865  LED-PTr  patterns  derived  from  a  combi-
nation  of  255  LED  lighting  patterns  and  1023  PTr  usage  patterns.  
The  analysis  revealed  a  trend  towards  higher  accuracy  when  fewer  
LEDs  were  simultaneously  illuminated  and  a  greater  number  of  PTrs  
were  employed.  The  LED  and  PTr  combination  pattern,  yielding  
the  highest  accuracy,  consisted  of  LED1  illuminated  in  conjunction  
with  phototransistors  1-3  and  5-10.  This  confguration  resulted  in  a  
13-gesture  classifcation  accuracy  of  72.4  %.  

To  enhance  the  classifcation  accuracy,  we  expanded  our  ap-
proach  beyond  a  simultaneous  LED  lighting  pattern  to  incorporate  
a  sequential  blinking  pattern.  This  pattern  involved  activating  an  
additional  LED  after  the  deactivation  of  the  previous  one  and  record-
ing  of  the  phototransistor  value.  Utilizing  all  ten  PTrs,  we  employed  
a  sequential  forward  method  to  identify  the  optimal  combination  of  
255  LED  lighting  patterns  that  would  yield  the  highest  classifcation  
accuracy.  The  search  process  continued  until  an  accuracy  of  93.2  %  
was  achieved,  which  corresponds  to  the  accuracy  obtained  when  
utilizing  all  2550  features.Ultimately,  a  classifcation  accuracy  of  
94.1  %  was  attained  through  sequential  activation  of  LED1,  4,  5,  and  
8  in  isolation.  

Based  on  these  results,  we  selected  LED1,  LED4,  LED5,  and  LED8,  
positioned  at  the  four  corners  of  the  device,  in  conjunction  with  
all  phototransistors  (PTr1-10)  for  further  analysis  considering  the  
trade-of  between  measurement  time  and  accuracy.  We  blinked  four  
LEDs  sequentially  and  recorded  the  values  of  the  ten  phototransis-
tors  for  each  LED.  Consequently,  a  total  of  40  features  (4  LEDs  ×  
10  PTrs)  were  employed  for  the  machine  learning  analysis.  
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Figure 8: Confusion matrix of intra-personal gesture classif-
cation. 

Figure 9: Classifcation accuracy for each participant. 

4.4  Gesture  Classifcation  by  the  Proposed  
System  

In  this  section,  we  use  the  device  confguration  selected  in  the  pre-
vious  section  to  perform  intra-person  gesture  classifcation  using  
data  from  the  same  participant,  and  inter-person  gesture  classif-
cation  using  data  from  other  participants.  The  device  used  in  this  
experiment  was  equipped  with  four  LEDs  and  10  phototransistors,  
as  described  in  Section  4.3.  Therefore,  from  the  data  acquired  in  
Section  4.1,  the  values  of  the  10  phototransistors  that  measure  the  
intensity  of  light  emitted  from  each  of  the  four  LEDs  were  utilized,  
resulting  in  4  LEDs  ×  10  PTrs  =  40  features  for  classifcation.  The  
SVM  determined  in  Section  4.2  is  used  as  the  machine  learning  
classifer,  and  the  features  were  standardized  to  have  a  mean  of  0  
and  a  variance  of  1.  

4.4.1  Intra-personal  Classification.  To  evaluate  the  gesture  classif-
cation  accuracy  for  individual  users,  the  intra-person  classifcation  
accuracy  was  assessed.  For  each  of  the  14  participants  (p1-p14),  
leave-one-out  cross-validation  was  conducted  using  one  of  the  10  
datasets  as  the  test  data.The  average  intra-person  classifcation  ac-
curacy  across  all  the  participants  was  94.1  ±  3.0  %.  Fig.  8  shows  
the  confusion  matrix  and  illustrates  that  while  many  gestures  were  
accurately  classifed,  some  errors  occurred.  Specifcally,  "Pull"  was  

Figure  10:  Confusion  matrix  of  inter-people  gesture  classif-
cation.  

sometimes  confused  with  "None,”  "Raise  left"  with  "Bend  up,”  and  
"Twist  left"  and  "Twist  right"  were  sometimes  confused.  Fig.  9  shows  
the  inter-person  classifcation  accuracy  of  each  participant.  Ac-
curacy  varied  across  participants,  with  p9  achieving  the  highest  
gesture  identifcation  accuracy  at  100.0  %,  and  p2  the  lowest  at  88.5  
%.  

4.4.2  Inter-person  Classification.  Considering  a  case  in  which  mul-
tiple  users  share  a  single  device,  we  examined  the  classifcation  
accuracy  across  diferent  users.  For  each  participant,  data  from  13  
other  people  were  used  as  training  data  to  evaluate  intra-person  
classifcation  accuracy.  

The  mean  inter-person  classifcation  accuracy  across  all  partic-
ipants  was  72.6  ±  1.5  %.  Fig.  10  shows  this  confusion  matrix.  In  
addition  to  the  previously  observed  confusion  among  None,  Pull,  
Push,  and  Twist  in  intrapersonal  classifcation,  confusion  between  
Raise  and  Bend  was  noted  in  the  inter-person  context.  

A  plausible  explanation  for  the  lower  accuracy  of  inter-person  
classifcation  compared  with  intra-person  classifcation  may  be  at-
tributed  to  the  variation  in  experimental  timing  across  participants.  
The  experiment  was  performed  indoors  with  the  blinds  closed  and  
under  the  same  lighting,  but  the  difering  environmental  light  con-
ditions  between  participants  who  conducted  the  experiment  during  
the  daytime  and  those  who  performed  it  at  night  may  have  afected  
the  classifcation  accuracy.  Therefore,  to  mitigate  the  infuence  of  
environmental  light,  we  implemented  a  centering  approach.  The  
values  obtained  when  each  LED  was  turned  on  were  centered  on  
those  obtained  when  no  LEDs  were  activated.  

This  adjustment  resulted  in  an  increase  in  the  average  inter-
individual  discrimination  accuracy  of  the  14  participants  to  85.1  %.  
Fig.  11  shows  the  confusion  matrix  after  the  feature  values  were  
centered.  Fig.  12  shows  the  inter-individual  discrimination  accuracy  
for  each  participant  after  centering.  The  centering  process  reduced  
the  confusion  between  None  and  Pull/Push,  as  well  as  between  
Bend  and  Raise,  thereby  improving  the  overall  accuracy.  However,  
confusion  between  bend-up  and  bend-down,  twist-right  and  twist-
left,  and  raise-right  and  raise-left  remained.  We  performed  the  same  
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Figure  11:  Confusion  matrix  of  inter-people  gesture  classif-
cation.  
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Figure 12: Classifcation accuracy for each participant. 

centering process for intra-person classifcation, but the accuracy 
did not improve. 

4.4.3  Accuracy  and  Number  of  Training  Sets.  To  evaluate  the  trade-
of  between  accuracy  and  training  data  size,  we  assessed  the  per-
formance  of  the  model  using  varying  amounts  of  training  data.  
Fig.  13  shows  the  relationship  between  the  number  of  sets  used  
as  training  data  and  the  classifcation  accuracy  for  the  13  gestures.  
The  vertical  axis  represents  the  mean  classifcation  accuracy  across  
14  participants.  The  sets  used  for  training  and  testing  were  ran-
domly  selected  for  each  participant,  and  one  set  was  selected  for  
the  test  set  regardless  of  the  number  of  training  sets.  The  results  
demonstrate  a  positive  correlation  between  the  number  of  training  
sets  and  classifcation  accuracy.  The  graph  shows  that  the  average  
accuracy  exceeded  90  %  after  training  for  more  than  six  sets.  

4.5  Processing  Speed  of  Real-time  Classifcation  
To  investigate  the  response  time  of  the  real-time  classifcation  sys-
tem,  a  classifcation  model  was  created  in  advance,  and  the  time  
required  for  classifcation  was  measured.  The  duration  for  reading  
data  via  serial  communication,  standardizing  the  data,  and  clas-
sifying  gestures  were  assessed  for  100  frames,  and  the  average  
time  was  calculated.  The  experimental  setup  was  consistent  with  

Figure 13: Accuracy and Number of Training Sets. 

the  hardware  requirements  outlined  in  Section  3.2.  For  intraper-
sonal  classifcation,  an  SVM  model,  selected  in  Section  4.2,  was  
constructed  from  10  sets  of  data  collected  using  four  LEDs  and  10  
phototransistors  and  employed  for  gesture  classifcation.  The  pro-
cessing  time  for  real-time  recognition  averaged  29.5  ms/frame  over  
100  frames.  This  corresponds  to  a  frame  rate  of  33.9  Hz,  suggest-
ing  that  the  proposed  system  can  identify  gestures  at  a  processing  
speed  suitable  for  real-time  applications.  

5  Discussion  and  Future  Work  

5.1  Discussion  of  experimental  results  
The  evaluation  experiments  confrmed  that  MaGEL  demonstrated  
high  accuracy  in  identifying  13  types  of  deformation  gestures  for  
both  intra- and  inter-person  classifcation.  Specifcally,  the  system  
achieved  an  accuracy  of  94.1  %  for  intra-person  classifcation  and  
85.1  %  for  inter-person  classifcation.  This  performance  was  attained  
using  four  LEDs  positioned  at  the  four  corners  of  the  device  and  
ten  phototransistors.  

Within  the  classifed  gestures,  confusion  occurred  in  some  ges-
tures.  These  included  "Pull"  and  "None,”  "Twist  right"  and  "Twist  
left,”  and  "Raise  left"  and  "Bend  up"  in  the  intra-person  classifcation.  
Pull  and  None  were  likely  to  be  misclassifed  when  the  participants  
applied  a  weak  force  during  deformation.  This  was  because  the  
gel  deformation  was  minimal,  making  it  difcult  to  distinguish  be-
tween  the  two.  "Raise  left"  was  confused  with  "Bend  up"  when  the  
opposite  side  of  the  grip  was  turned  inward  when  lifting  the  grip,  
resulting  in  a  shape  similar  to  "Bend  up."  In  inter-person  classif-
cation,  "Twist  right"  and  "Twist  left,”  "Raise  left"  and  "Raise  right,”  
and  "Bend  up"  and  "Bend  down"  were  confused  sometime.  This  
may  be  because  it  was  difcult  for  the  light  from  the  LED  to  reach  
the  phototransistor  on  the  opposite  side  when  twisted  to  the  left  
or  right,  making  it  difcult  to  distinguish  between  them.  Based  on  
the  results  of  inter-individual  identifcation,  it  is  possible  to  iden-
tify  deformable  gestures  by  training  on  other  users’  data,  but  it  is  
preferable  to  train  on  the  same  user’s  data  because  each  user  has  
his  or  her  own  movement  habits.  

In  the  evaluation  of  the  processing  speed  for  real-time  gesture  
identifcation,  33.9  Hz,  an  average  response  time  from  data  acqui-
sition  to  gesture  identifcation,  was  achieved  using  the  machine  
learning  model.  This  indicates  that  the  MaGEL  has  sufcient  real-
time  responsiveness  and  can  be  used  as  an  input  device.  These  
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Figure 14: Playing an FPS game using MaGEL as an input 
device. 

results indicate that MaGEL is an input device that can identify soft 
gel deformations in real-time with high accuracy. 

5.2  Application  Example  
An  example  application  of  MaGEL  is  a  game  controller  that  enables  
deformation  input.  This  application  is  designed  for  frst-person  
shooter  (FPS)  games  and  allows  players  to  input  commands  by  de-
forming  the  soft  controller,  thereby  providing  a  gaming  experience  
that  is  not  possible  with  a  conventional  rigid  controller.  Fig.  14  
shows  an  image  of  playing  an  FPS  game  using  MaGEL  as  an  input  
device.  

As  part  of  a  preliminary  investigation,  we  examined  the  input  
gestures  required  for  such  a  fexible  game  controller  and  obtained  
the  deformation  gestures  from  seven  participants.  Table  2  outlines  
the  correspondence  between  the  game  operations  and  deformation  
gestures  employed.  For  the  deformation  of  bending  one  of  the  grips,  
the  post-deformation  shape  of  the  gel  exhibits  similarity,  which  
reduces  the  accuracy  of  identifcation  when  relying  only  on  the  
MaGEL  system.  Therefore,  an  inertial  measurement  unit  (IMU)  was  
integrated  into  one  of  the  grips,  enabling  the  system  to  distinguish  
the  deformation  more  efectively.  The  participants  proposed  defor-
mation  gestures  that  were  inspired  by  real-world  body  movements.  
Their  feedback  included  suggestions  such  as  "synchronizing  device  
movement  with  the  sound  of  footsteps,"  "mimicking  the  action  of  
pulling  a  trigger,"  and  "developing  a  movement  control  that  incor-
porates  bodily  motions."  

Overall  feedback  was  positive,  confrming  the  usefulness  of  the  
MaGEL-based  application.  Many  of  the  participants  commented  
that  "it  was  fun  and  enjoyable,"  "Having  the  actual  object  was  great,"  
and  "can  be  controlled  by  feeling,"  "the  soft  gel  was  cute,"  and  "I  
would  like  to  use  such  a  controller  if  one  existed."  However,  a  par-
ticipant  who  was  unfamiliar  with  FPS  games  reported  difculties  
owing  to  the  complexity  of  the  operations.  Some  participants  also  
commented  that  they  would  like  to  avoid  moving  their  hands  too  
much  for  permanent  operations,  such  as  moving,  considering  the  
operability  of  the  game.  In  this  implementation,  deformable  in-
puts  were  used  for  all  operations  to  confrm  the  usefulness  of  the  

Table  2:  Game  control  operations  and  corresponding  de-
formable  inputs  

Game  Operations  Deformation  
Move  grips  up  and  down.  

Bend  the  right  grip  upwards.  
Bend  the  left  grip  upwards.  
Move  grips  back  and  forth.  

Move  forward  
Move  left  
Move  right  

Shoot  

deformable  controllers.  Therefore,  it  is  necessary  to  match  oper-
ations  and  inputs  considering  hand  fatigue  and  operability  when  
developing  actual  games.  

5.3  Future  Challenges  
5.3.1  Estimation  of  Gesture  Intensity.  The  MaGEL  proposed  in  this  
study  uses  a  transparent  gel  to  estimate  device  deformation,  en-
abling  deformation  gestures  to  serve  as  input.  In  the  evaluation  
experiments  described  in  Section  4,  we  focus  only  on  gesture  clas-
sifcation.  However,  if  the  intensity  of  gestures  could  be  estimated  
through  regression  analysis,  or  if  multiple  gestures,  such  as  Push  
and  Twist,  were  executed  simultaneously,  the  system  would  have  
the  capability  to  recognize  a  broader  range  of  gestures.  In  addition  
to  gestures  that  can  be  estimated  by  this  system,  conventional  input  
methods  can  also  be  used  by  placing  buttons  on  hard  cases  or  gel  
parts.  

5.3.2  Various  Shapes  of  Gel.  Gesture  identifcation  is  feasible,  even  
with  alterations  to  the  gel’s  shape,  provided  that  the  light  transmis-
sion  from  the  LED  to  the  phototransistor  varies  with  gel  deforma-
tion.  The  MaGEL  device  exhibits  a  simple  structure  comprising  a  
transparent  gel,  LED,  and  phototransistor.  In  this  study,  the  gel  was  
molded  into  various  shapes,  enabling  fexible  design  customization.  

The  gel  shape  can  be  modifed  to  enhance  gesture  recognition  
accuracy  or  to  guide  user  interactions  based  on  its  form.  The  higher  
accuracy  observed  in  the  identifcation  of  the  pull-back  gesture,  in  
comparison  to  Raise  and  Bend,  suggests  that  using  multiple  rows  of  
phototransistors,  rather  than  a  single  row,  may  provide  a  more  pre-
cise  detection  of  movements  perpendicular  to  the  device.  Although  
thin  rectangular  gels  were  employed  in  this  experiment,  thicker  
gels  could  accommodate  two  rows  of  phototransistors.  In  another  
confguration,  a  narrow  tubular  gel  would  likely  exhibit  a  more  
pronounced  deformation  when  the  user  manipulates  the  left  and  
right  handles  towards  themselves,  potentially  facilitating  improved  
identifcation.  Other  gel  confgurations,  such  as  an  accordion  shape  
or  the  inclusion  of  slits,  can  encourage  the  pulling  of  gestures  from  
users.  In  addition,  the  risk  of  misclassifcation  can  be  minimized  by  
selecting  gestures  that  are  less  prone  to  confusion  during  applica-
tion  implementation.  If  the  device  design  incorporates  shapes  that  
allow  its  operation  using  various  body  parts,  including  arms  and  
legs,  it  extends  its  accessibility  to  individuals  with  physical  disabil-
ities.  In  addition,  unlike  conventional  button-based  interfaces,  it  
operates  through  a  gripping  motion,  making  it  accessible  to  users  
who  experience  difculties  with  precise  fnger  movements.  This  
design  approach  enhances  the  device’s  usability  for  a  broader  range  
of  individuals,  including  those  with  limited  dexterity  in  their  hands.  

990



                

           
         

         
            

           
             

        
         

          
            

           
         

         

  
           

          
        

          
          

         
   

 

 
            

            
           
        

 
             

           
            

           
     

            
           

           
           

 
           

             
      

            
          

           
         

          
 

          
         

            
          

          
 

            
           

 
           

          
           

       
 

           
         

          
          

            
 

          
           

  
            

            
           

          
 

          
          

          
 

            
          

            
           
     

            
            

           
           

   
          

           
            

           

IUI ’25, March 24–27, 2025, Cagliari, Italy 

The transparency of the gel, which covers a signifcant portion of 
the device, presents opportunities for utilizing the device’s internal 
components and rear surface for gesture identifcation. For instance, 
the application of a gel sheet to a smartphone can enable operations 
such as pinching and shifting. Additionally, it could function as a 
magnifying tool, where the user holds the gel up to the screen and 
pulls it to zoom in the desired area. 

However, the optimal number and arrangement of LEDs and 
phototransistors, as discussed in Section 4.3, were designed for the 
rectangular gel and the 13 gestures selected in this study. While the 
principle of gesture identifcation can be applied to gels of various 
shapes, the optimal arrangement should be re-evaluated based on 
the specifc shape and intended gestures for each application. 

5.3.3  Gel  Durability.  In  this  study,  urethane  resin  was  selected  
because  of  its  softness;  however,  it  exhibited  degradation  over  time  
and  demonstrated  a  tendency  to  tear.  Additionally,  under  the  ap-
plication  of  a  signifcant  force,  such  as  when  a  player  is  absorbed  
in  a  game,  the  gel  component  is  prone  to  cracking  at  points  of  
contact  with  the  protrusions  on  the  grip.  It  is  necessary  to  examine  
its  deformation  capacity,  specifcally  evaluating  the  intensity  and  
number  of  deformations  that  it  can  withstand  without  tearing.  

While  not  embedding  the  LED/phototransistor  within  the  gel  
facilitates  easier  replacement  of  the  deteriorated  gel,  the  need  for  
replacement  persists.  Given  that  the  proposed  method  is  compati-
ble  with  other  transparent  and  fexible  materials  beyond  urethane  
resins,  it  would  be  advantageous  to  explore  alternative  materials  
that  are  more  resistant  to  degradation.  

6 Conclusion 
In this study, we proposed a soft-input device, MaGEL, to realize 
a more intuitive deformation input. MaGEL comprises a soft and 
transparent gel, infrared LEDs, and phototransistors. When users 
perform deformation gestures, the intensity of the LED light passing 
through the transparent gel changes. The system detects changes in 
phototransistor values and identifes the deformation of the device 
through machine learning. 

In  the  evaluation  experiment,  we  confrmed  the  device  confg-
uration  that  is  suitable  for  identifying  13  types  of  gestures,  the  
recognition  accuracy  of  the  13  types  of  gestures,  and  the  real-time  
responsiveness  of  the  system.  The  device  confguration  was  such  
that  four  LEDs  were  placed  at  each  corner  of  the  gel,  and  the  photo-
transistors  were  placed  evenly  on  both  sides  of  the  gel.  By  sequen-
tially  turning  on  these  four  LEDs,  the  gestures  can  be  identifed  
with  the  highest  accuracy.  Ten  datasets  for  13  gestures  were  ob-
tained  from  14  participants,  and  each  gesture  could  be  identifed  
with  a  classifcation  accuracy  of  94.1  %  for  intra-personal  identifca-
tion  and  85.1  %  for  inter-personal  identifcation.  In  addition,  when  
gestures  were  identifed  in  real  time  from  the  obtained  data,  it  was  
confrmed  that  the  gestures  could  be  identifed  with  a  response  
speed  of  33.9  Hz.  

These  results  show  that  MaGEL  has  sufcient  gesture  identi-
fcation  accuracy  and  response  speed  to  function  efectively  as  a  
real-time  input  device.  As  a  prospect,  we  plan  to  refne  the  system  
to  estimate  not  only  gesture  classifcation  but  also  deformation  
intensity  through  regression  analysis.  
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