Abstract
Recent studies have used pressure sensors to assess users ’confidence. Building on this, we developed a table-top device with four load cells for unobtrusive confidence estimation during typical PC tasks. Force–time data recorded during typing were analyzed to extract keystroke parameters like key-press force and typing speed. A random forest regression with 7-level confidence estimation achieved an R2 of 0.204. Additionally, a binary (“ confident ” vs. “ not confident ”) random forest classifier reached 73.3 % accuracy. Feature importance indicated that variations in key-press force and typing speed were the strongest predictors; “ confident ”states featured higher forces and steadier rhythms.
Information
Book title
ヒューマンインタフェース学会研究報告集
Volume
27
Pages
57-62
Date of issue
2025/06/18
Date of presentation
2025/06/18
Keywords
confidence estimation / keystroke parameters / table-top device / Feature Importance / / / /Citation
丹羽 涼太, 佐藤 雪乃, 上堀 まい, 長谷川 卓己, 大島 崇, 伊藤 雄一, . キーボードの打鍵パラメータによる自信度推定に関する検討, ヒューマンインタフェース学会研究報告集, Vol.27, No.4, pp.57-62, 2025.